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Abstract

Control function approaches to estimating production functions rely on a proxy that is

monotone in an unobserved scalar productivity conditioning on other state variables.

Ackerberg, Caves, and Frazer (2015) point out a potential functional dependence prob-

lem when conditioning only on capital. They provide a simple solution by conditioning

on both capital and labor. This approach allows flexible timing of labor input for when

firms learn all or part of their productivity. However, we demonstrate that ACF’s moment

condition may suffer from weak identification, and its significance depends on the timing of

labor input. We then propose easy-to-implement modified procedures that remedy these

issues, and provide Monte Carlo evidence. Estimation of production functions with flexi-

ble timing assumption of inputs is important because it can allow for unobserved, serially

correlated, firm-specific wage shocks, labor being chosen prior to other variable inputs, or

labor having dynamic implications. Moreover, since the exact timing of input choices is

unknown and even may differ across firms in practice, our proposal is valuable as it fully

incorporates the flexible framework but avoids weak identification.
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1 Introduction

The fundamental challenge in estimating production functions is due to the simultaneity of
input and output decisions by firms. Since as early as Marschak and Andrews (1944), the
literature has much focused on developing approaches to solving the problem. In the empirical
literature, over the last two decades, the methods proposed by Olley and Pakes (OP, 1996)
and Levinsohn and Petrin (LP, 2003) have been extensively used. Both OP and LP propose
a control function approach to address this simultaneity by inverting unobserved productivity
from a proxy variable. Their approach, however, relies critically on timing assumptions of input
choices. In particular, LP assumes that labor input is determined after intermediate input so
that the intermediate input demand does not depend on labor input. Also in their setting labor
is a static input, and potential dynamic implications of labor input are all ruled out.

Ackerberg, Caves, and Frazer (ACF, 2015) argue that not only this timing assumption
is restrictive in nature, but also a functional dependence problem arises in the first stage of
the LP procedure that regresses output on labor input and a nonparametric function of other
inputs.1 As an alternative, they propose inverting an input demand function that is conditional
on state variables, including labor input, which allows labor input to have potential dynamic
implications. They argue that their approach is robust to different timing assumptions on labor
input such that firms can choose the amount of labor input after learning about all or part of
the unobserved productivity.

However, in this paper we first argue that ACF’s moment condition for estimation may suf-
fer from weak identification and that the degree to which it causes issues varies by the timing
of labor input, and provide Monte Carlo evidence to illustrate our points. ACF attributes this
identification problem only to a “spurious minimum.” We show, however, that this spurious min-
imum arises only under a particular timing assumption: the current labor input is determined
only after the current productivity shock is fully realized. Otherwise, this spurious minimum
should not exist in the population. Nevertheless, our Monte Carlo simulations indicate that
the spurious minimum is often found in finite samples unless the labor input is determined
sufficiently ahead of the time at which the current productivity shock is realized. On the other
hand, if the labor input is indeed determined far in advance of the current productivity shock,
we argue that more serious weak identification problem arises in the ACF moments, and they
may produce unreliable estimates. In this case, while one may augment current labor input to
the instrument set, except that it is a valid instrument only when the labor input is determined
before any part of the current productivity shock is realized.

1Wooldridge (2009) propose an approach to estimating the two stages in LP (or OP) simultaneously, avoiding
this functional dependence issue. However, this approach does not relax the restrictive timing assumption of
labor input as LP. See also Gandhi, Navarro, and Rivers (2017) for related identification problems of the proxy
variable approach.
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In this paper, we find easy-to-implement modifications that remedy the identification prob-
lem, with a resulting estimator that is robust to different timing of labor input. Specifically, we
include further lagged inputs in the instrument set, as well as modify the ACF procedure by
explicitly estimating the constant term in the production function. We also discuss why these
modifications help for identification of production functions with flexible timing of labor input.

Monte Carlo simulations show that our modified procedure performs well in finite samples
and yields estimates robust to different timing assumptions of labor input.2 Moreover, in
practice, we do not know when firms make their labor input choices, and different firms may
have different timing of input choices. To demonstrate this point, we construct a data generating
process (DGP) where the timing of input choices is heterogeneous across firms. Monte Carlo
simulations demonstrate that our modified estimator exhibits robust performance in this setting
as well. The results suggest our proposed estimator will be useful in the realistic situation where
the exact timing of input choices is unknown and may differ across firms.

The remainder of this paper is organized as follows. Section 2 outlines production function
estimations using control functions. Section 3 discusses the identification problems of ACF’s
moments. Section 4 exhibits our Monte Carlo experiments, in particular, with different timing
of labor input. Section 5 develops our modified procedures and examines their finite sample
performances. Section 6 concludes.

2 Review of Model and Estimation

In this section, we briefly review estimation of production functions using control functions.
Since this paper develops estimation of production functions that allows flexible timing of labor
input building on ACF, we focus on their approach in this review. Consider the value-added
production function for a firm i at time t given by

yit = �0 + �llit + �kkit + !it + ⌘it,

where lit and kit denote the natural log of labor and capital inputs, respectively; !it is the
unobserved state variable that impacts the firm’s decisions on inputs and production level; and
⌘it denotes a pure i.i.d. shock in production. The unobserved productivity !it is the source
of the simultaneity, and the least squares estimation of the production function is inconsistent
because the labor and capital input (or investment) choices depend on !it. kit is a state variable,
and lit is a freely variable input in OP and LP while it is another state variable in ACF.

To control for this endogeneity problem, OP and LP propose using a proxy variable to invert
2Compared with this paper, the procedure proposed in Kim, Luo, and Su (2019) assumes this constant is

known. Both ACF and Kim, Luo, and Su (2019) run their Monte Carlo studies only at a fixed timing of labor
input, and do not examine the robustness of the estimator with different timing of labor input.
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out unobserved productivity !it from the investment or input demand. Both OP and LP make
an implicit assumption on the timing of labor input choice in their proxy variable approach.
In particular LP assumes that labor input is determined after intermediate input, so that the
intermediate input demand is given by

mit = f̃t(kit,!it)

for which the capital input is the only observed state variable. ACF argues that this timing
assumption can be restrictive, in addition to the functional dependence problem, since it does
not allow lit to be a state variable when the intermediate input is determined. To allow for
more flexible assumptions on this timing of labor input choice, ACF defines the intermediate
input demand as

mit = ft(lit, kit,!it)

and, given the monotonicity of the input demand in the unobserved scalar productivity, the
inverse function

!it = ht(lit, kit,mit) (1)

becomes the control in their setting.3 Specifically, the firm may choose labor input lit at
time t � b where b 2 [0, 1]. Note that this timing of labor input b is likely unknown to the
analyst and heterogeneous across firms/industries. As a result, this specification allows labor
to be determined before all or part of !it is realized at time t. Importantly, it allows labor to
depend on serially correlated unobserved shocks such as wage, allows labor to have dynamic
implications, that is, firm’s decision on the current labor not only affects current profits, but also
future profits, with possible adjustment costs, and allows intermediate inputs to be chosen after
labor or simultaneously with labor. We build on this flexible setting to develop our modified
procedures to estimate production functions later.

Substituting (1) into the production function, ACF obtains

yit = �0 + �llit + �kkit + ht(lit, kit,mit) + ⌘it = �t(lit, kit,mit) + ⌘it. (2)

In the first stage, ACF estimates the function �t(lit, kit,mit) by minimizing the sample coun-
terpart of the objective function E[(yit � �t(lit, kit,mit))2]. In the second stage, ACF uses the

3Since mit is a non-dynamic input, this monotonicity condition for mit, being conditioned on both labor and
capital (or only on capital in LP’s setting), is identical to that for investment in OP such that more productive
firms should use more intermediate inputs if they maximize their profits. The scalar productivity assumption
rules out production functions with multiple structural unobservables e.g. as in McElroy (1987). However, the
approaches with multiple errors typically utilize static first order conditions of input demands, so would rule
out labor having dynamic implications, which we focus on in this paper.
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estimated control function �t and assumes a first order Markov process of the productivity as

!it = E[!it|!i,t�1] + ⇠it = g(!i,t�1) + ⇠it

to control for the endogeneity of inputs where ⇠it denotes an innovation term. Because the
composite shock ⇠it+ ⌘it is uncorrelated with the firm’s information at time t� 1, ACF obtains
the moment condition

E[⇠it + ⌘it|Ii,t�1] = E[yit � �0 � �llit � �kkit

� g (�t�1(li,t�1, ki,t�1,mi,t�1)� �0 � �lli,t�1 � �kki,t�1) |Ii,t�1] = 0,

where Ii,t�1 denotes the firm’s information at t� 1.
Let t�b denote a point in time when the firm chooses labor input lit for b 2 [0, 1]. Depending

on this timing assumption ACF proposes instruments zit = (1, kit, li,t�1, �t�1(·)) if labor is to
be chosen at time t � b for any b 2 [0, 1) and zit = (1, kit, lit, li,t�1,�t�1(·)) if labor is chosen
at t � 1, i.e. labor input depends on !i,t�1, but not on any part of ⇠it. Here the fundamental
identification argument, based on the timing assumptions, is that the state variable kit is
allowed to be correlated with E[!it|!i,t�1], but it is uncorrelated with the innovation in the
productivity shock ⇠it = !it � E[!it|!i,t�1], while only the lagged labor li,t�1 is uncorrelated
with the innovation term ⇠it unless the current labor lit is actually determined at time t� 1 or
before by the firm. On the other hand, both kit and li,t�1 are uncorrelated with ⌘it, the pure
i.i.d. shock in production at time t.

In practice, researchers often use a simple autoregressive model for the unobserved produc-
tivity as

!it = ⇢!i,t�1 + ⇠it

and we focus on this simple setting. Let wit = {(yit, lit)[ zit} and write the moment condition:

E[r(wit; ✓0)] = 0 (3)

r(wit; ✓) = zit ⇥ (yit � �0 � �llit � �kkit

�⇢ · (�t�1(li,t�1, ki,t�1,mi,t�1)� �0 � �lli,t�1 � �kki,t�1)),

where ✓ = (�0, �l, �k, ⇢) and ✓0 denote the true parameter. Then, the production function
parameters can be estimated using a GMM method based on the moment condition (3).

To facilitate the computation, ACF actually proposes to concentrate out two parameters,
�0 and ⇢, similarly to LP method as follows. For trial values of the parameters �l and �k, first
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construct an estimate for �0 + !it as

d�0 + !it(�l, �k) = b�t(lit, kit,mit)� �llit � �kkit,

where b�t(lit, kit,mit) is obtained from the first stage. Then ACF runs regression d�0 + !it(�l, �k)

on its lagged counterpart d�0 + !i,t�1(�l, �k) to obtain the regression residual ⇠̂it(�l, �k). Finally,
ACF estimates �l and �k using the concentrated moment conditions
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!#
= 0 (4)

if labor is chosen at time t� b for any b 2 [0, 1); alternatively, ACF proposes
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75 = 0 (5)

if labor is chosen at time t� 1.4

In the next section we first argue that although these moments may allow for flexible timing
of labor input, they are subject to potential identification problems. We then seek possible
solutions in the subsequent section and develop modified procedures robust to the flexible
timing framework.

3 Identification

In this section, we verify that the global identification problem arises in the ACF moments,
but we also make the nuanced qualification that the problem should occur only for specific
timing of labor input choice. On the other hand, we note that the moments (4) with the lagged
labor input are potentially weak, even when the global identification problem does not exist.
Additionally, while the moments (5) with current labor input are potentially strong, current
labor is a valid instrument only when the labor is determined before any part of the current
productivity shock is realized. These points are all illustrated in our Monte Carlo experiments
later. We perform our identification analysis based on the DGP setting considered by ACF,
which is standard in the empirical literature of production function estimations except that we
consider flexible timing of labor input by firms.5

4Note, however, that to use the alternative moment (5), one needs to know the exact timing of labor input,
and the timing should be the same for all firms.

5Analogously to the current setting, our identification analysis here may be applied to other settings (e.g.
different processes of productivity change, wages, or other labor adjustment costs) for which we may find DGPs
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Following ACF, we let productivity !i,t�1 evolve to !i,t�b, where b 2 [0, 1], at which point
in time the firm chooses labor input lit. Specifically,

!i,t�b = ⇢1�b!i,t�1 + ⇠Ait ,

!it = ⇢b!i,t�b + ⇠Bit ,

where it is imposed that V ar(⇢b⇠Ait +⇠Bit ) = V ar(⇠it), and hence V ar(⇠Ait ) is decreasing in b while
V ar(⇠Bit ) is increasing in b.6 In this setting, firms are allowed to choose lit with less than perfect
information about !it, and this information decreases as b increases. In particular, ⇠Bit = 0 and
V ar(⇠Bit ) ⌘ �2

b = 0 when b = 0. Therefore, this framework allows labor input lit, chosen at
period t, period t� 1, or period t� b (with 0 < b < 1), to have potential dynamic implications.

To see how a spurious identification point arises in the original ACF moments, let us first
examine the inverted productivity at the true parameters. From (2), by construction of �t(·),
we have

�t(lit, kit,mit)� �kkit � �llit = �0 + !it. (6)

In the ACF concentrated procedure, d�0 + !it = b�t(lit, kit,mit) � �kkit � �llit is used for the
autoregressive regression of the productivity in place of !it. Specifically, they estimate

( d�0 + !it) = ↵0 + ⇢( d�0 + !i,t�1) + ⇠it, (7)

and the above regression becomes equivalent to b!it = ⇢b!i,t�1 + ⇠it with ↵0 = �0(1 � ⇢). Note,
however, that including an intercept in the regression makes the residual ⇠it(�l, �k) have mean
zero by construction, regardless of whether the intercept is actually equal to the true ↵0 =

�0(1� ⇢). We later discuss why this fact becomes important for our proposed procedures with
flexible timing of labor input.

3.1 The “spurious” minimum problem

To see how identification could fail in the original ACF moments, as noted by ACF, and to
further elaborate on the issue, let the spurious minimum be �̃k = 0 and �̃l = �l + �k = 1. Let
us write �it = �t(lit, kit,mit) for ease of notation. From (6), it follows that

�it � �̃kkit � �̃llit = �0 + �kkit � (1� �l)lit + !it. (8)

under which similar identification problems exist. We focus on the current setting since ACF develops their
estimation procedure for this standard setting in the empirical literature.

6See ACF’s DGP in their Monte Carlo experiments, and discussions following their equation (37).
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Also, from the optimal labor input chosen by firms maximizing expected profits at time t� b,
given the production function and the firm-specific wage, we can write (1� �l)lit as

(1� �l)lit = �0 + ln �l � lnWit + �kkit + (⇢b!i,t�b +
1

2
�2
b ), (9)

where Wit denotes the wage, and the productivity !i,t�1 evolves to !i,t�b, at which point in time
the firm chooses labor input.7 Plugging (9) into (8), we obtain

�it� �̃kkit� �̃llit = � ln �l��2
b/2+ lnWit�⇢b!i,t�b+!it = (� ln �l��2

b/2)+ ⇠Bit +lnWit, (10)

because !it = ⇢b!i,t�b + ⇠Bit .
Equation (10) has two important implications for the identification problem. First, the

constant term (� ln �l � �2
b/2) on the RHS of (10) is different from �0 in (6). We utilize this

fact to modify the ACF procedure to later aid identification. Second, the regression residual
from the AR(1) regression at the spurious minimum using �it � �̃kkit � �̃llit is also different
from ⇠it in (7). Now suppose the wage is serially correlated, and follows an AR(1) process as

lnWit = ⇢W lnWi,t�1 + ⇠Wit ,

where ⇠Wit denotes the current period wage shock, is not correlated with firm’s information
available at time t� 1. From (10), we then obtain

�it � �̃kkit � �̃llit � ⇢W
⇣
�i,t�1 � �̃kki,t�1 � �̃lli,t�1

⌘
+ ↵̃ = ⇠Bit � ⇢W ⇠Bi,t�1 + ⇠Wit , (11)

where ↵̃ = (1� ⇢W )(ln �l + �2
b/2).

Note that innovation term ⇠Wit in the wage process is independent of (kit, li,t�1) because
they are determined at time t� 1. Therefore, as discussed in ACF’s footnote 16, the spurious
parameter (�̃k = 0, �̃l = 1) may solve the ACF moment condition. However, this is true only at
an extreme timing of labor choice because the composite error in the spurious residual function
(11), ⇠Bit � ⇢W ⇠Bi,t�1 + ⇠Wit , satisfies the moment condition with the ACF instruments (kit, li,t�1)

only if b = 0. In fact, while li,t�1 satisfies the spurious moment condition for all b 2 [0, 1],
kit is a function of lagged productivity !i,t�1, and is correlated with ⇠Bi,t�1, unless b = 0. This
is because ⇠Bi,t�1 is part of ⇠i,t�1, and hence is correlated with !i,t�1 and, by extension, with
kit. From these observations, we conclude li,t�1 is potentially susceptible to the identification
problem for all b 2 [0, 1], while kit becomes problematic only if b approaches zero.

In summary, the spurious solution of the ACF moments in the population arises only when
b = 0, in which case ⇠Bit = ⇠Bi,t�1 = 0 in (11). In the population, as long as b > 0, we see

7Therefore, ACF’s DGP assumes that Wit is known to firms at time t� b.
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that the spurious minimum should not arise because the instrument kit is correlated with ⇠Bi,t�1,
violating the spurious moment condition.

3.2 Weak identification

In this subsection, we discuss why the ACF moments are subject to weak identification even
when b is away from zero. Note that b is set to 0.5 in the original ACF DGP, so there should
be no spurious minimum in the population of this DGP as discussed in the previous section.
However, in finite samples, the spurious minimum problem may exist if the correlation between
⇠Bi,t�1 and the instrument kit is small and/or b is close to zero. In fact, our Monte Carlo
experiments suggest that the spurious minimum arises for various timing of labor choice (see
also Kim, Luo, and Su (2019)’s extensive Monte Carlo experiments using the original ACF DGP
with b = 0.5). From our discussion above, li,t�1 is mean independent of the spurious residual
in (11) for all b 2 [0, 1]. Therefore, although li,t�1 is a valid instrument regardless of the timing
of labor choice b 2 [0, 1], it is potentially weak, yielding spurious solutions in finite samples.

Another way to see this weak instrument problem is from a regression perspective of mo-
ment condition (3). Given a value of ⇢, lit � ⇢li,t�1 can be regarded as the regressor for the
labor coefficient. Thus, if the correlation between instrument li,t�1 and regressor lit � ⇢li,t�1

is not sufficiently significant for some ⇢, then instrument li,t�1 becomes weak. In other words,
the differencing lit � ⇢li,t�1 may effectively dispense with the signal in the regressor and the
noise becomes dominant. This argument is similar to the panel data approach to estimating
production functions with a fixed effect (see, e.g., Blundell and Bond (2000)). From the labor
input function in (9), we see that the only remaining exogenous variation of labor input, net
of capital input and lagged productivity, is the wage, since capital input and lagged productiv-
ity also appear in the residual function (3). Therefore, the differencing lit � ⇢li,t�1 at or near
spurious autoregressive coefficient ⇢W (i.e., the autoregressive coefficient of the wage process)
will weaken the correlation between lit� ⇢li,t�1 and instrument li,t�1, which may yield the weak
instrument problem.8

On the other hand, current period labor choice lit is not subject to the spurious minimum
issue because it is always correlated with ⇠Wit , i.e., E[⇠Wit lit] 6= 0, in (11) regardless of the
timing b. However, lit is not a valid instrument unless b = 1, because E[⇠itlit] 6= 0 as long as
b 6= 1. Nevertheless, its invalidity is less severe when b approaches 1, such that labor input is
determined at a point in time close to the previous period t� 1 (when the firm has very little

8We also note that ACF estimates both �l and �k in the second step. Since labor lit and capital kit are
both endogenous variables, identification requires at least two instrumental variables. ACF moments use li,t�1

and kit for instruments. However, significant correlation among multiple instruments can reduce estimation
precision in finite samples, due to the potential violation of a proper rank condition for identification. In fact,
both instruments in ACF moments are functions of lagged wage lnWi,t�1 and lagged capital ki,t�1 and thus are
subject to some non-trivial correlation.
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information on the current productivity shock other than the previous period’s !i,t�1).
In summary, we find that li,t�1 is a valid instrument regardless of labor input timing b 2 [0, 1],

but it is potentially a weak instrument, which may yield spurious solutions in finite samples.
On the other hand, lit is a strong instrument, but invalid unless b = 1. In other words, the ACF
procedure with the moments (4) may suffer from global identification failure if b approaches
zero and suffer from the weak identification issue if b gets close to one. On the other hand,
the ACF procedure with the moments (5) does not suffer from either problem, but it produces
inconsistent estimates unless b = 1. The first part of our Monte Carlo study in Section 4 clearly
illustrates these points.

Note that ACF’s general framework, using the conditional input demand function, allows
flexible timing of labor input for when the firm learns all or part of the productivity. Therefore,
it is valuable to develop an estimation procedure that fully incorporates the flexible framework
but avoids weak identification. The second part of our Monte Carlo study in Section 5 illustrates
such procedures we develop in this paper.

4 Monte Carlo Study of the ACF Procedure

Our design of the experiments in Section 4 and 5 is twofold. First, we conduct experiments to
demonstrate the identification issues of the original ACF procedure, as discussed in Section 3.
We estimate the production function by replicating the original ACF procedure but varying the
initial value for estimation, searching for the global minimum of the GMM objective function.9

We follow the Monte Carlo setup (DGP1) employed in ACF to generate the data, except that
we vary the timing of labor input choice such that firms are allowed to choose their labor inputs
at t � b where b 2 {0, 0.05, 0.1, ..., 0.95, 1}. Note that the original ACF DGP assumes b = 0.5.
Second, we propose modified procedures that overcome weak identification, and are robust to
flexible timing of labor input. We then demonstrate their performance through simulations in
Section 5. There, we also construct a DGP in which the timing of labor input is heterogeneous
across firms and find that our proposed estimator is robust to heterogeneous timing of labor
input choice.

In all exercises, we try different starting values of (�l, �k), i.e. (0, 1), (0.1, 0.9), (0.2, 0.8),....,
(0.9, 0.1), for the search of the global minimum in the estimation. In particular, for each pair
of initial values, we obtain an estimate of (�l, �k) that minimizes the objective function (i.e.,
local minimum). We then compare the values of these local minima to obtain our estimate of
the global minimum for each simulated dataset. Moreover, for our estimation with the over-
identified moment conditions, we use the continuously updated GMM estimator (CUE) (see,

9ACF uses the true value as the initial value to set aside the identification caveat in their Monte Carlo study.
See their footnote 16.
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e.g., Hansen, Heaton, and Yaron (1996)). Lastly, we report the empirical distributions of the
estimates in box plots by the timing of labor input choice described in the main text, and also
tabulate the means and standard deviations in the Appendix.

4.1 ACF Procedure with different timing of labor input

4.1.1 The identification problem

As discussed in Section 3, the ACF procedure may suffer from identification problems de-
pending on the timing of labor input. We construct our first experiment to measure how this
“spurious” minimum problem or weak identification influences estimation with finite samples
under different timing assumptions of labor input choice. For a given timing of labor input
b 2 {0, 0.05, 0.1, ..., 0.95, 1}, we simulate 1,000 datasets. Each dataset contains 1,000 firms for
10 time periods. We estimate the production function by following the standard ACF proce-
dure. That is, we adopt the concentrated moment condition (4) with instruments (li,t�1, kit) to
estimate �l and �k.

Figure 1: ACF Procedure with Different Timing of Labor Input

Note: The box plots are generated using estimates from 1,000 simulated datasets for each timing of labor input.
For each value of b, each firm is assumed to choose its current labor input lit at t� b. The true parameter values
are (�l,�k) = (0.6, 0.4).
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Figure 1 clearly illustrates that the “spurious” minimum or weak identification exists and that
the degree to which the identification problem occurs depends on different timing assumptions
of labor input choice.10 Specifically, these box plots indicate that when b < 0.7, the spurious
minimum estimates around (�l, �k) = (1, 0) arise more frequently. Note that the true parameter
values are (�l, �k) = (0.6, 0.4) for all b in the DGP. On the other hand, when b � 0.7, the ACF
procedure yields estimates that are more dispersed, measured by the first and the third quartile
of the simulated estimates, suggesting weak identification of the ACF moment condition (4).

In the Appendix, Table 1 reports averages and standard deviations of the estimated co-
efficients that yield the global minimum from this procedure with 1,000 repetitions. Table 1
further illustrates the identification problem of the ACF procedure showing that the mean of
the estimated �l increases from 0.610 to 0.749 and the mean of �k decreases from 0.389 to 0.251
as b increases from 0 to 1. Both patterns point to the fact that the estimated coefficients devi-
ate further from the true values as labor has more dynamic features. In other words, the ACF
procedure suffers more severely from the identification problem as labor input is determined
further in advance from the current period t, at which point in time the current productivity is
fully learned by the firm. Also, the standard deviations of the 1,000 estimates become bigger
as b increases, implying that the ACF estimator suffers more greatly from weak identification
as labor is chosen closer to the previous period t� 1.

4.1.2 lit as an additional instrument

ACF remarks that, if labor is chosen at t� 1, one can use lit as an additional instrument. We
now demonstrate the performance of such adjustment under different timing of labor choice.
Specifically, we adopt the concentrated moment conditions in equation (5) with instruments
(lit, li,t�1, kit) to estimate �l and �k.

Figure 2 clearly shows that, while this approach does not produce a spurious minimum,
compared to the estimator using moment condition (4), this approach produces biased estimates
of �l and �k unless b = 1, i.e., when labor is chosen at time t � 1. In fact, when b � 0.65, the
estimates tend to converge to the true values faster as b increases. For example, Table 2 shows
that the mean of the estimated �l drops from 0.782 to the true value 0.6 as b increases from
0.65 to 1, whereas the mean of the estimated �l only slightly drops from 0.944 to 0.884 as b

increases from 0 to 0.6. This experiment confirms that while lit is a more relevant IV and it is
not subject to a spurious minimum problem, it is valid only when b = 1.

10This incidence of the spurious minimum or weak identification may substantially vary by different DGPs.
In the original ACF DGP we use here the standard deviation of the log wage is set to be constant over time and
equal to 0.1. Kim, Luo, and Su (2019) experiment with an alternative DGP (with fixed b = 0.5) for which the
standard deviation of log wage is increased to 0.5, and find that the percentage of spurious minimum indications,
e.g. for cases the estimated �l > 0.80 and �k < 0.20, increases from 8.5% to 39.1% with the alternative DGP of
a higher standard deviation of log wage.
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Figure 2: ACF Procedure with lit as IV

In summary, we conclude that the spurious minimum problem or the weak identification
of the ACF procedure with moment (4) is not negligible in finite samples. The identification
problem prevails under all timing assumptions of labor input, and severity of the problem
increases when labor is determined at a point in time closer to t� 1. On the other hand, even
though lit is a more relevant IV in alternative moment condition (5), it is only valid when b = 1.

5 Modified Procedures Robust to Flexible Timing of Labor

The goal of this section is to develop procedures that are robust to different timing of labor
input. We also illustrate the finite sample performance of our proposed estimators using the
same Monte Carlo setup from Section 4.

We make three important modifications to the original ACF procedure: (i) We run the AR
regression of productivity without an intercept. This may require us to identify the constant
term �0 in the production function. In our first modified procedure, we assume �0 is known
to the econometrician, which helps us to gain some intuition about identification. In the
subsequent sections, we generalize our procedure to estimate this constant term in an earlier
step or along with other parameters. (ii) We also add “1” to the instrument set. This ensures
that the AR regression’s residual ⇠̂it(�l, �k) has zero sample mean, which is the sample analogue
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of the innovation term ⇠it having zero mean.11 (iii) We add further lagged input variables such
as li,t�2 and ki,t�1 to the instrument set (4). The further lagged input variables act as excluded
instruments, and they are relevant instruments as illustrated in Kim, Luo and Su (2019).

In the proxy variable approach for estimating production functions, it is common practice to
ignore various other unobservable factors of input demand, which may indicate market/industry
structure, input prices (Olley and Pakes, 1996), or other aggregate shocks (Hahn et al, 2017). In
the ACF setting, this missing factor of the input demand function is the wage of the individual
firm. Since the wage follows an autoregressive process and is a factor of the labor input demand,
lagged labor input li,t�2 becomes a relevant instrument for lit. Also, the further lagged labor
li,t�2 is not as highly correlated to kit as li,t�1 is to kit, thereby bringing additional exogenous
variation to the instrument set to aid identification.

If we had included all the factors that determine the input demands, including firm-specific
input prices, in mit = ft(lit, kit,!it) or in its inverse !it = f�1

t (lit, kit,mit) and so the control
function �t(lit, kit,mit), the further lagged labor inputs would not be relevant or less relevant for
current labor.12 To illustrate this point, let the t subscript in the input demands denote input
prices, and let lit = q(kit,!i,t, pit) be the labor input, mit = f(lit, kit,!it, pit) be the intermediate
input where pit denotes a vector of firm-specific input prices including wages, and note that

lit = q(kit, f
�1(lit, kit,mit, pit), pit)

= q(kit, g(f
�1(li,t�1, ki,t�1,mi,t�1, pi,t�1)) + ⇠it, pit)

= q(kit, g(�(li,t�1, ki,t�1,mi,t�1, pi,t�1)� �0 � �lli,t�1 � �kki,t�1) + ⇠it, pit),

where !it = g(!i,t�1)+ ⇠it follows the first-order Markov process. Therefore, li,t�2 should not be
relevant for current labor input given (kit, ki,t�1, li,t�1,mi,t�1, pit, pi,t�1). However, li,t�2 remains
relevant because in the current empirical setting the firm-specific input prices including wages
are not observed to econometricians, so are not included in the input demands, and the control
function for estimation.13

5.1 Estimation with known �0

We discuss why the first modification helps for identification. If we run the AR regression
without the intercept, it helps the moment condition to yield a “true” solution, deterring the

11Note that since we run the AR regression without an intercept, the regression residual does not necessarily
have zero mean, and imposing the zero mean condition acts like an additional moment condition.

12It is generally not possible in the estimation of production functions to include all the factors in the input
demand due to limitations of available data (e.g. individual firm’s wages or other input prices are not observed).

13Kim, Petrin, and Song (2016) consider the input demand functions as lit = q(kit,!it, pit) and mit =
f(kit,!it, pit) in the LP setting, and show that the current input prices can be used as instruments for lit even
when the labor and the intermediate input depend on the same state variables.
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Figure 3: Modified Procedure with Augmented IV (Known �0)

spurious minimum, because the spurious minimum solution requires the AR regression in (11)
to have a non-zero intercept as ↵̃ = (1 � ⇢W )(ln �l + �2

b/2), which is different from the true
intercept ↵0 = �0(1� ⇢) in (7). In the ACF DGP, we have �0 = 0 in the production function,
allowing distinction between true intercept ↵0 = 0 and spurious intercept ↵̃. Indeed, this
argument holds for any �0, since we can always subtract �0 out from d�0 + !it in AR regression
(7), if �0 is known. Without the intercept in the “spurious” AR regression using (11), the
“spurious” innovation term ⇠Bit � ⇢W ⇠Bit + ⇠Wit would not have zero mean, which is inconsistent
with the true DGP, in which the true innovation term ⇠it does have zero mean.

In the modified procedure, the AR regression does not include the intercept; i.e., we run
the regression b!it = ⇢b!i,t�1 + ⇠it to obtain the residual. This regression without an intercept
deters ⇠it from having zero mean at parameter values other than the true one. Instead, we
include “1” in the instrument set so that we can ensure innovation ⇠it has zero mean at the true
parameter. If we included a constant in the regression, the residual would have zero mean for
any parameter values that include the spurious solution.

Figure 3 and Table 3 report the estimation results, using the same simulated data set as in
Section 4, from the modified procedure with the augmented instruments (1, li,t�1, li,t�2, kit, ki,t�1)

assuming �0 is known. We use the CUE GMM estimator and vary the initial value of estimation,
searching for the global minimum of the objective function, as in Section 4. The modified
procedure obviously improves the estimates of the production function parameters. The means
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of the estimated coefficients are very close to the truth and the standard deviations of the 1,000
replicated estimates are also much smaller than the estimates from the original ACF procedure
(see Figure 1 and Table 1), indicating that virtually all estimates from the modified procedure
are driven by the true solution of the population moment condition.

Importantly, the modified procedure is robust to different timing of labor input, while the
original ACF procedure is somewhat sensitive to the DGPs with different timing of labor input.
Also, the standard deviations of the 1,000 estimates for the DGPs with higher values of b

are slightly smaller than those of the DGPs with smaller values of b, while the original ACF
procedure suffered from more severe weak identification when b approaches one. Indeed, the
standard deviation of the estimates from the modified procedure increases marginally as b

approaches zero, at the point where the original ACF moments yield the spurious minimum in
the population. Nevertheless, the modified procedure does not yield a spurious minimum, even
at b = 0.

5.2 Estimating �0 in the first step

In practice, the constant in the production function is unknown. Moreover, it may not be
separately identified from the mean of the productivity. To deal with this issue, we first estimate
�0 in the first stage of the ACF procedure. This constant �0 is interpreted as either the sum of
the constant in the production function and the mean of the productivity, or just the constant
in the production function if one normalizes the mean of the productivity to zero. Note that,
from (6) we can obtain this constant from the estimate of the constant term in b�t(lit, kit,mit).

Let the constant term in b�it be �̂0. Removing this constant from d�0 + !it = b�t(lit, kit,mit)�
�kkit � �llit, we then obtain the de-meaned productivity e!it = d�0 + !it � �̂0. Lastly, we can
use regression e!it = ⇢e!i,t�1 + ⇠it to obtain the innovation term as if the productivity has zero
mean. We then estimate the production function parameters using the CUE GMM estimator
with augmented instruments (1, li,t�1, li,t�2, kit, ki,t�1).

Alternatively, one can derive function �t(·), given a specific production function, and obtain
the constant term. Consider a Leontief production function, as in ACF,

Yit = min
n
e�0K�k

it L
�l
it e

!it , e�mMit

o
e⌘it ,

where Yit = eyit , Kit = ekit , Lit = elit , and Mit = emit . In this Leontief production function
setting, we have

�m +mit = �0 + �kkit + �llit + !it, (12)

and hence substituting !it — the inverse intermediate input demand function — into the value-
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Figure 4: Modified Procedure with Augmented IV (Estimating �0 in the first step)

added production function, we obtain

yit = �0 + �kkit + �llit + !it + ⌘it

= �0 + �kkit + �llit + [�m +mit � �0 � �kkit � �llit] + ⌘it

= �m +mit + ⌘it. (13)

This implies the true function �t(lit, kit,mit) of the ACF DGP first stage becomes �t(lit, kit,mit) =

�m +mit. Then, following equation (13), we can estimate constant �m using OLS of yit on mit.
Moreover, from equation (12), it is clear that �m equals the sum of the constant in the produc-
tion function and the mean of the productivity in this specification.

Figure 4 and Table 4 report the results, which suggest that our modified procedure is still
robust to different timing of labor input, even after we deal with unknown constant �0. Both the
means of the estimated �l and �k are very close to the true values, and the standard deviations of
the 1,000 estimates are much smaller than those from the original ACF procedure. Interestingly,
we observe that the performance of the modified procedure estimating the unknown constant
is almost identical to the one in the previous experiment with known �0.
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5.3 Estimating �0 jointly with (�l, �k)

A more general approach we propose is to estimate (�0, �l, �k) simultaneously. For this purpose,
we modify the concentrated moment condition as follows.

1. For a trial value of the parameters (�0, �l, �k), first construct an estimate for !it as

d!it(�0, �l, �k) = b�t(lit, kit,mit)� �0 � �llit � �kkit,

where b�t(lit, kit,mit) is obtained from the ACF first stage, and run the AR(1) regression
without a constant as

d!it(�0, �l, �k) = ⇢⇥ d!i,t�1(�0, �l, �k) + ⇠it(�0, �l, �k)

to obtain the regression residual ⇠̂it(�0, �l, �k).

Extending this step to a first-order Markov process of !it is also straightforward. In this
case we estimate the regression

d!it(�0, �l, �k) = g( d!i,t�1(�0, �l, �k); �!) + ⇠it(�0, �l, �k)

to obtain the regression residual ⇠̂it(�0, �l, �k) where we let E[!it|!i,t�1] = g(!i,t�1; �!) for
some parameter �!.14

2. Execute the CUE GMM using the moment condition

E

2

6666664
⇠̂it(�0, �l, �k)⇥

0

BBBBBB@

1

li,t�1

li,t�2

kit
ki,t�1

1

CCCCCCA

3

7777775
= 0.

We then conduct a Monte Carlo experiment using the same setup in Section 4. Figure 5
and Table 5 report the estimation results using this approach, conveying that this modified
procedure is robust to different timing assumptions of labor input, and that the means of
all three estimated coefficients, �l, �k and �0, are very close to the true values.15 Although
estimating the constant together with �l and �k produces slightly larger standard deviations
of the 1,000 estimates of �l and �k compared to the ones using the concentrated moments

14In practice, this means one can include higher order terms or approximating basis functions of !̂i,t�1 in the
regression.

15In the estimation, we use different sets of initial values for �l and �k, as they are used in the previous
experiments. Without loss of generality, we set the initial value of �0 equal to zero.
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Figure 5: Modified Procedure with Augmented IV (Estimate �0 jointly with (�l, �k))

(see Tables 3 and 4 for comparison) in the previous sections, the differences are rather small,
implying that the estimated coefficients are all driven by the true minimum. Also, although
the standard deviation of the estimates from this modified procedure increases marginally as b

approaches zero, the procedure does not yield a spurious minimum, even at b = 0. This Monte
Carlo exercise, therefore, illustrates that our proposed procedure can be generalized to estimate
constant �0 together with the other production function parameters.

5.4 Heterogeneous timing of labor input choice

Finally, we construct a DGP where the timing of labor input is heterogeneous across firms.
Specifically, we randomly draw a value for each firm’s timing of labor input b from a triangular
distribution with support [0, 1], and then generate the rest of data. All data settings other than
this random timing are the same as in Section 4. We then simultaneously estimate production
function parameters (�0, �l, �k) using the modified procedure in Section 5.3.

Figure 6 represents the estimation results when we vary the peak value of the triangular
distribution from 0 to 1 with a stepsize of 0.05. For each distribution, we repeat the experiment
1,000 times to generate the distribution of the estimates. It is evident that our procedure is
robust to heterogeneous timing of labor input choice. Also the performance of the proposed
estimator is quite similar across different peak values of the triangular distribution, including
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Figure 6: Heterogeneous Timing of Labor Choice: Modified Procedure with Augmented IV

Note: The box plots are generated using estimates from 1,000 simulated datasets for each timing of labor input.
For each value of b, firms are assumed to choose their current labor input lit at t � b, where b is drawn from
a triangular distribution with support [0, 1], and we vary the peak value of the distribution with a stepsize of
0.05. The true parameter values are (�l,�k) = (0.6, 0.4).

values close to zero. This result suggests our proposed estimator will be useful in the more
realistic data situation where the exact timing of input choices is unknown and may differ
across firms.

6 Conclusion

The standard ACF approach allows flexible timing of labor input for when firms learn all or
part of their productivity. However, we demonstrate that ACF’s moment condition may suffer
from weak identification, and the degree to which this causes issues varies by timing of labor
input choice. We propose easy-to-implement modified procedures that remedy these issues,
and provide Monte Carlo evidence. Since, in practice, the exact timing of input choices is
unknown and may differ across firms, our proposed solution is valuable, as it fully incorporates
the flexible framework but avoids the problem of weak identification.
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Appendix

A Tables

�l �k

Value of b # of Replications Mean Std Mean Std
0.00 1,000 0.610 0.071 0.389 0.072
0.05 1,000 0.612 0.072 0.387 0.073
0.10 1,000 0.610 0.066 0.390 0.067
0.15 1,000 0.612 0.071 0.388 0.072
0.20 1,000 0.613 0.071 0.387 0.072
0.25 1,000 0.621 0.087 0.380 0.088
0.30 1,000 0.623 0.091 0.377 0.091
0.35 1,000 0.633 0.109 0.367 0.109
0.40 1,000 0.628 0.101 0.372 0.101
0.45 1,000 0.638 0.116 0.362 0.116
0.50 1,000 0.645 0.124 0.355 0.123
0.55 1,000 0.647 0.126 0.353 0.126
0.60 1,000 0.660 0.138 0.341 0.138
0.65 1,000 0.680 0.155 0.320 0.154
0.70 1,000 0.707 0.170 0.292 0.169
0.75 1,000 0.729 0.178 0.272 0.178
0.80 1,000 0.734 0.180 0.266 0.179
0.85 1,000 0.746 0.182 0.255 0.181
0.90 1,000 0.751 0.183 0.250 0.182
0.95 1,000 0.752 0.183 0.249 0.181
1.00 1,000 0.749 0.182 0.251 0.180

Table 1: ACF procedure with different timing of labor input

Note: The tables are generated using estimates from 1,000 simulated datasets for each timing of labor input.
For each value of b, firms are assumed to choose their current labor input lit at t� b. The true parameter values
are (�l,�k) = (0.6, 0.4).
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�l �k

Value of b # of Replications Mean Std Mean Std
0.00 1,000 0.944 0.002 0.082 0.005
0.05 1,000 0.943 0.003 0.081 0.005
0.10 1,000 0.941 0.003 0.082 0.005
0.15 1,000 0.939 0.003 0.084 0.006
0.20 1,000 0.936 0.004 0.087 0.006
0.25 1,000 0.933 0.004 0.089 0.007
0.30 1,000 0.930 0.004 0.092 0.007
0.35 1,000 0.927 0.005 0.096 0.008
0.40 1,000 0.923 0.005 0.100 0.008
0.45 1,000 0.919 0.006 0.104 0.010
0.50 1,000 0.915 0.007 0.108 0.011
0.55 1,000 0.910 0.011 0.114 0.015
0.60 1,000 0.884 0.049 0.146 0.067
0.65 1,000 0.782 0.063 0.279 0.084
0.70 1,000 0.727 0.013 0.341 0.019
0.75 1,000 0.702 0.008 0.360 0.013
0.80 1,000 0.680 0.008 0.375 0.014
0.85 1,000 0.659 0.007 0.385 0.013
0.90 1,000 0.638 0.007 0.394 0.014
0.95 1,000 0.619 0.007 0.398 0.014
1.00 1,000 0.600 0.007 0.400 0.015

Table 2: ACF procedure with lit as IV
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�l �k

Value of b # of replications Mean Std Mean Std
0.00 1,000 0.599 0.016 0.400 0.007
0.05 1,000 0.598 0.015 0.400 0.006
0.10 1,000 0.599 0.013 0.400 0.006
0.15 1,000 0.599 0.012 0.400 0.006
0.20 1,000 0.600 0.012 0.400 0.006
0.25 1,000 0.600 0.011 0.400 0.006
0.30 1,000 0.600 0.010 0.400 0.006
0.35 1,000 0.599 0.010 0.401 0.006
0.40 1,000 0.599 0.010 0.401 0.006
0.45 1,000 0.600 0.009 0.400 0.006
0.50 1,000 0.600 0.009 0.400 0.006
0.55 1,000 0.600 0.009 0.400 0.006
0.60 1,000 0.600 0.009 0.400 0.005
0.65 1,000 0.600 0.009 0.400 0.006
0.70 1,000 0.600 0.008 0.400 0.005
0.75 1,000 0.600 0.008 0.400 0.006
0.80 1,000 0.600 0.009 0.400 0.006
0.85 1,000 0.600 0.008 0.400 0.006
0.90 1,000 0.600 0.008 0.400 0.006
0.95 1,000 0.600 0.008 0.400 0.006
1.00 1,000 0.600 0.009 0.400 0.006

Table 3: Modified Procedure with Augmented IV (Known �0)
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�l �k

Value of b # of replications Mean Std Mean Std
0.00 1,000 0.599 0.016 0.400 0.007
0.05 1,000 0.599 0.015 0.400 0.006
0.10 1,000 0.599 0.013 0.400 0.006
0.15 1,000 0.599 0.012 0.400 0.006
0.20 1,000 0.600 0.011 0.400 0.006
0.25 1,000 0.600 0.011 0.400 0.006
0.30 1,000 0.600 0.010 0.400 0.006
0.35 1,000 0.599 0.010 0.401 0.006
0.40 1,000 0.599 0.010 0.401 0.006
0.45 1,000 0.600 0.009 0.400 0.006
0.50 1,000 0.600 0.009 0.400 0.006
0.55 1,000 0.600 0.009 0.400 0.006
0.60 1,000 0.601 0.009 0.400 0.005
0.65 1,000 0.600 0.008 0.400 0.005
0.70 1,000 0.600 0.008 0.400 0.005
0.75 1,000 0.600 0.008 0.400 0.006
0.80 1,000 0.600 0.009 0.400 0.006
0.85 1,000 0.600 0.008 0.400 0.006
0.90 1,000 0.600 0.008 0.400 0.006
0.95 1,000 0.600 0.008 0.400 0.006
1.00 1,000 0.600 0.008 0.400 0.005

Table 4: Modified Procedure with Augmented IV (Estimating �0 in the 1st stage)

25



�l �k �0

Value of b # of replications Mean Std Mean Std Mean Std
0.00 1,000 0.594 0.044 0.405 0.047 -0.007 0.062
0.05 1,000 0.597 0.027 0.402 0.031 -0.002 0.042
0.10 1,000 0.598 0.021 0.402 0.025 -0.002 0.036
0.15 1,000 0.599 0.018 0.401 0.023 -0.001 0.033
0.20 1,000 0.600 0.015 0.401 0.020 -0.001 0.029
0.25 1,000 0.600 0.014 0.401 0.020 -0.001 0.030
0.30 1,000 0.600 0.013 0.400 0.019 0.000 0.028
0.35 1,000 0.600 0.012 0.400 0.018 0.001 0.028
0.40 1,000 0.599 0.012 0.400 0.018 0.000 0.026
0.45 1,000 0.600 0.011 0.400 0.017 0.000 0.025
0.50 1,000 0.600 0.011 0.399 0.018 0.001 0.026
0.55 1,000 0.600 0.011 0.399 0.017 0.001 0.026
0.60 1,000 0.600 0.010 0.400 0.017 0.000 0.025
0.65 1,000 0.600 0.010 0.400 0.017 0.000 0.026
0.70 1,000 0.601 0.009 0.399 0.016 0.002 0.025
0.75 1,000 0.600 0.010 0.400 0.016 0.000 0.024
0.80 1,000 0.600 0.010 0.400 0.017 0.000 0.025
0.85 1,000 0.601 0.009 0.399 0.016 0.001 0.024
0.90 1,000 0.600 0.009 0.400 0.017 0.001 0.025
0.95 1,000 0.601 0.009 0.399 0.016 0.001 0.025
1.00 1,000 0.600 0.010 0.400 0.016 0.000 0.024

Table 5: Modified Procedure with Augmented IV (Estimating �0 with �l and �k)
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�l �k �0

Value of b # of replications Mean Std Mean Std Mean Std
0.00 1,000 0.600 0.012 0.400 0.018 -0.001 0.027
0.05 1,000 0.600 0.012 0.400 0.018 0.000 0.027
0.10 1,000 0.599 0.012 0.401 0.018 -0.001 0.027
0.15 1,000 0.599 0.012 0.400 0.019 0.000 0.028
0.20 1,000 0.600 0.011 0.400 0.017 0.001 0.026
0.25 1,000 0.599 0.012 0.401 0.019 -0.001 0.028
0.30 1,000 0.600 0.011 0.401 0.019 0.000 0.028
0.35 1,000 0.600 0.011 0.400 0.017 0.000 0.026
0.40 1,000 0.600 0.011 0.400 0.017 0.001 0.027
0.45 1,000 0.600 0.011 0.400 0.018 0.000 0.027
0.50 1,000 0.600 0.011 0.400 0.018 0.000 0.027
0.55 1,000 0.599 0.010 0.400 0.017 0.000 0.025
0.60 1,000 0.600 0.010 0.400 0.017 0.000 0.026
0.65 1,000 0.600 0.010 0.401 0.017 -0.001 0.025
0.70 1,000 0.600 0.010 0.399 0.017 0.002 0.026
0.75 1,000 0.601 0.010 0.399 0.017 0.002 0.026
0.80 1,000 0.600 0.010 0.400 0.017 0.000 0.025
0.85 1,000 0.600 0.011 0.399 0.018 0.002 0.027
0.90 1,000 0.601 0.010 0.398 0.017 0.003 0.025
0.95 1,000 0.600 0.010 0.399 0.017 0.001 0.024
1.00 1,000 0.600 0.010 0.400 0.017 -0.001 0.025

Table 6: Heterogeneous Timing of Labor Choice: Modified Procedure with Augmented IV

Note: This table is generated using estimates from 1,000 simulated datasets for each timing of labor input.
For each value of b, firms are assumed to choose their current labor input lit at t � b where b is drawn from
a triangular distribution with support [0, 1], and we vary the peak value of the distribution with a stepsize of
0.05. The true parameter values are (�0,�l,�k) = (0, 0.6, 0.4).
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